The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis
نویسندگان
چکیده
Elastodynamic problems are investigated in this work by employing the enriched finite element method (EFEM) with various enrichment functions. By performing dispersion analysis, it is confirmed that for elastodynamic amount of numerical dispersion, which closely related to error from space domain discretization, can be suppressed a very low level when quadric polynomial bases employed construct local functions, while EFEM other types functions (linear or first order trigonometric functions) relatively large. Consequently, present function shows more powerful capacities analysis than considered techniques. More importantly, attractive monotonic convergence property broadly realized approach typical two-step Bathe temporal discretization technique. Three representative experiments conducted verify abilities analysis.
منابع مشابه
Cover interpolation functions and h-enrichment in finite element method
This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملOn enrichment functions in the extended finite element method
This paper presents mathematical derivation of enrichment functions in the extended finite element method (XFEM) for numerical modelling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition and reproduction technique. We start with the simple case of a triangular linear element cut by o...
متن کاملHigh Order Extended Finite Element Method for Cracked Domains
Computer simulation of fracture processes remains a challenge for many industrial modelling problems. In a classical finite element method, the non-smooth displacement near the crack tip is captured by refining the mesh locally. The number of degrees of freedom may drastically increase, especially in three dimensional applications. Moreover, the incremental computation of a crack growth needs f...
متن کاملA High-order Finite Element Method for Electrical Impedance Tomography
Electrical impedance tomography (EIT) is a non-invasive imaging technique where a conductivity distribution in a domain is reconstructed from boundary voltage measurements. The voltage data are generated by injecting currents into the domain. This is an ill-conditioned non-linear inverse problem. Small measurement or forward modeling errors can lead to unbounded fluctuations in the reconstructi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10234595